Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(11): 10387-10397, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097108

RESUMO

OBJECTIVE: FoxM1 transcription factor contributes to tumor metastasis and poor prognosis in many cancers including triple-negative breast cancer (TNBC). In this study, we examined the effects of FoxM1 inhibitor Thiostrepton (THIO) alone or in combination with MEK inhibitor Selumetinib (SEL) on metastatic parameters in vitro and in vivo. METHODS: Cell viability was determined by MTT assay. Immunoblotting and immunohistochemistry was used to assess metastasis-related protein expressions in 4T1 cells and its allograft tumor model in BALB/c mice. In vivo uPA activity was determined by enzymatic methods. RESULTS: Both inhibitors were effective on the expressions of FoxM1, ERK, p-ERK, Twist, E-cadherin, and Vimentin alone or in combination in vitro. THIO significantly decreased 4T1 cell migration and changed the cell morphology from mesenchymal-like to epithelial-like structure. THIO was more effective than in combination with SEL in terms of metastatic protein expressions in vivo. THIO alone significantly inhibited mean tumor growth, decreased lung metastasis rate and tumor foci, however, no significant changes in these parameters were observed in the combined group. Immunohistochemically, FoxM1 expression intensity was decreased with THIO and its combination with SEL in the tumors. CONCLUSIONS: This study suggests that inhibiting FoxM1 as a single target is more effective than combined treatment with MEK in theTNBC allograft model. The therapeutic efficacy of THIO should be investigated with further studies on appropriate drug delivery systems.


Assuntos
Tioestreptona , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Tioestreptona/farmacologia , Tioestreptona/química , Tioestreptona/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteína Forkhead Box M1/genética , Linhagem Celular Tumoral , Proliferação de Células , Quinases de Proteína Quinase Ativadas por Mitógeno
2.
EXCLI J ; 20: 223-231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34121969

RESUMO

Memantine is used to prevent glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. As glutamine is one of the major source of anabolism in fast growing cancer cells, we aimed to interfere with the cancer cell metabolism in A549 lung cancer cells by using memantine. The effects of memantine on cell cycle progression and cell death in A549 cells were assessed by MTT assay and PI staining. Cells were treated with 0.25 mM memantine for 48 hours and then cell metabolism (AMPKA1, AMPKA2, HIF1A, B-catenin, PKM), apoptosis (p53, p21, Bax, Bcl-XL, NOXA, PUMA) and autophagy related (LC3B-I, LC3B-II, SQSTM1) mRNA and protein expressions were investigated by RT-qPCR and western blotting. Memantine decreased cell viability significantly in a concentration-dependent manner by inducing G0/G1 cell cycle arrest. Our results suggest that memantine activates AMPK1/2 significantly (p=0.039 and p=0.0105) that led cells through apoptosis and autophagy by decreasing cancer cell metabolism regulators like HIF1A, B-catenin and PKM as the consequence of this energetic shift. Memantine represents a useful tool to target metabolism in cancer cells. Therefore, it might be used a new repurposed drug in cancer treatment.

3.
Int J Pharm ; 568: 118513, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301462

RESUMO

The fabrication of electrospun composite nanofiber mats used as drug delivery systems with controlled release property is of general interest in biomaterial sciences. The aim of this study was to investigate the effect of MWCNTs on the release profile of the hydrophilic drug. For this aim, tetracycline hydrochloride (TCH) loaded poly (lactic acid) (PLA)/polyvinylpyrrolidone (PVP)/TCH-multiwall carbon nanotubes (MWCNTs) composite fibrous mats were fabricated by electrospinning process, and the drug release profile, release kinetics and cytotoxicity were evaluated to determine the potential for utilization as drug delivery systems. Furthermore, the morphological and physicochemical properties of the composite PLA/PVP/TCH-MWCNTs fibrous mats were characterized. The results demonstrated that TCH and MWCNTs were successfully loaded into the PLA/PVP biopolymeric matrix and the addition of TCH or MWCNTs did not alter the uniform and beadless fibrous structure of the PLA/PVP fibers, resulting in increased Young's modulus and maintained the fibrous structure of the composite mats. Moreover, MWCNTs loaded electrospun mats showed much more controlled drug release manner, increased significantly the drug encapsulation efficiency and reduced the burst release of TCH. In vitro cytotoxicity assay showed that the PLA/PVP/TCH-MWCNTs composite mats did not have a toxic effect on the human umbilical vein endothelial cells (HUVECs). With the improved physicochemical and mechanical properties, controlled drug release-profile and cytocompatibility, the fabricated composite nanofiber mats may be used as therapeutic materials for the biomedical applications as drug delivery systems.


Assuntos
Antibacterianos/química , Nanotubos de Carbono/química , Tetraciclina/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/ultraestrutura , Poliésteres/química , Povidona/química
4.
Int J Pharm ; 565: 83-94, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31063838

RESUMO

Potential usage of biodegradable and biocompatible polymeric nanofibers is the most attention grabbing topic for the drug delivery system. In order to fabricate ultrafine fibers, electrospinning, one of the well-known techniques, has been extensively studied in the literature. In the present study, the objective is to achieve the optimum blend of hydrophobic and hydrophilic polymers to be used as a drug delivery vehicle and also to obtain the optimum amount of doxycycline (DOXH) to reach the optimum release. In this case, the biodegradable and biocompatible synthetic polymers, poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO), were blended with different ratios for the production of DOXH-loaded electrospun PCL/PEO membranes using electrospinning technique, which is a novel attempt. The fabricated membranes were subsequently characterized to optimize the blending ratio of polymers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD) and water contact angle analysis. After the characterization studies, different amounts of DOXH were loaded to the optimized blend of PCL and PEO to investigate the release of DOXH from the membrane used as a drug delivery vehicle. In vitro drug release studies were performed, and in vitro drug release kinetics were assessed to confirm the usage of these nanofiber materials as efficient drug delivery vehicles. The results indicated that 3.5% DOXH-loaded (75:25 w/w) PCL/PEO is the most acceptable membrane to provide prolonged release rather than immediate release of DOXH.


Assuntos
Antibacterianos/administração & dosagem , Doxiciclina/administração & dosagem , Membranas Artificiais , Poliésteres/administração & dosagem , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Doxiciclina/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Microscopia Eletrônica de Varredura , Nanofibras/administração & dosagem , Nanofibras/química , Nanofibras/ultraestrutura , Poliésteres/química
5.
J Cell Biochem ; 120(4): 5628-5635, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317654

RESUMO

BACKGROUND: There is still no clinically approved agent for mutant KRAS, which is the most common alteration in non-small-cell lung cancer (NSCLC). Flavopiridol is a semisynthetic flavonoid that inhibits cell growth through cyclin-dependent kinases in G1/S or G2/M of the cell cycle and induces apoptosis. In this study, we evaluated its effect on cellular apoptosis, survival, and metastasis mechanisms on KRAS mutant A549, Calu-1, and H2009 cell lines. METHODS: The cytotoxic effects of flavopiridol on NSCLC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability test. The cells were treated with 200 and 400 nM flavopiridol, and, then, apoptosis, survival, and metastasis-related protein expressions were determined by Western blot analysis. The antimetastatic effects of flavopiridol were assessed by wound healing and Galectin-3 activity assay. RESULTS: Flavopiridol drastically affected toxicity in all KRAS mutant NSCLC cells at nanomolar concentrations. Also, it could efficiently inhibit wound healing and Galectin-3 activity in all the cells tested. However, the metastasis-related protein expressions did not reflect these obvious effects on blotting. p-Erk was activated as a cellular survival mechanism to escape apoptosis in all the cells tested. CONCLUSION: Although there are many mechanisms that still need to be elucidated, flavopiridol can be used as a metastasis inhibitor and an apoptosis inducer in KRAS mutant NSCLC.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Flavonoides/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...